Uniform Random Sampling of Chemical Space

Guido von Rudorff, University of Kassel

Coverage

- Systematic databases are small
- Imbalanced
- Synthesis creates biases

ChEMBL	
[0,5)	250
[5,10)	5.939
[10,15)	50.802
[15,20)	231.873
[20,25)	535.187
[25,30)	605.591
[30,35)	457.611
[35,40)	236.646
[40,45)	106.679
[45,50)	48.321
[50,55)	27.320
[55,60)	16.730
[60,65)	13.014
[65,70)	8.599
[70,75)	2.327
[75,79]	16

Random Sampling

Allow for data-driven fundamental statements "Most molecules do X", "High X means low Y"

Transferability More reliable understanding of trends

Lower data bias More realistic generalisation error

More data efficiency Maximally spanning coverage

Formal statements Often require uniform sampling

Measure coverage Generative methods

Problems

- Total number unknown
- Distribution unknown

Scaling

Take some atoms from {C, O, N, F, S}, H-saturated

"Give me some fruit, please!"

Random Sampling

Goal

Sample all molecules (with given constraints) with known probabilities.

Sampling

- Choose weighted random chemical formula
- Choose weighted random degree sequence
- Choose weighted random molecular graph

Requirements

- Find all sum formulas and degree sequences
- Sample loop-free multigraphs with given degree sequences uniformly
- Find weights

Solved, Seconds Solved, Seconds^[1]

1 C Greenhill, M Sfragara, *Theo Comput Sci*, **2018**.

Counting via enumeration

- SMOG (1996), MOLGEN (1998), ASSEMBLE(2000), OMG (2012), PMG (2013), MAYGEN (2021), surge (2022)
- Until about 10-15 atoms

Orderly generation

- Find canonical sorting of (partial) molecular graphs
- Create graphs in canonical order

Monte Carlo Sampling

- Grow and shrink molecular graphs
- Slow sampling

Counting without enumeration

Goal

Estimate number n of loop-free multigraphs with given degree sequence.

Average Path Length l_G

Sample from random molecule pairs

 $l_G \sim \log n$

Pure degree sequenceEvery valency exists only once.O=C=SO=C=OS=C=S

Non-pure estimate

- Assumes that random graphs are almost never symmetric
- All modifications independent
- Combinatorial product

$$N_P(d) = \prod_v \prod_i \left(\sum_{j>i} c_j \atop c_i \right)$$
$$l_G(d) = \left(1 + \left[\sum_i d_i \right]^{-1} \log N_P^L \right) l_G(d_U)$$

Asymptotic Scaling

Average Path Lengths become expensive

- Heuristics become less efficient
- More sampling
- Converging slowly

Asymptotic Scaling^[1]

- Needs to be calibrated to molecules

 $G = \frac{M!}{(M/2)!2^{M/2}k_1!\cdots k_n!}$ $\exp\left(\left(y_1 - \frac{1}{2}\right)\frac{M_2}{M} + \left(x_2 - \frac{1}{2}\right)\frac{M_2^2}{2M^2} + \frac{M_2^4}{4M^5}\right)$ $-\frac{M_2^2 M_3}{2M^4} + \left(x_3 - x_2 + \frac{1}{3}\right) \frac{M_3^2}{2M^3} + (an+b)/M + (cn+d)M + e$ $M_r = \sum_{i}^{n} [k_i]_r$

1 C Greenhill, B McKay, *SIAM*, **2013**.

Examples

10 atoms, CHONF, at least 3 hydrogens and one fluorine

CH₂

F

11

- Number of atoms
- Atoms per element (and combinations)
- Valences
- Via rejection sampling:
 - Bonds (count and bond orders)
 - Ring presence / membership
 - Stability
 - Substructures

- ...

Coverage of databases

Chemical formula

Summary

Thanks Ali Banjafar Sarah Engel Diego Monterrubio Chanca Sana Qureshi Nicolas Grimblat

Randomized | Known distribution: statistical statements
Regions | No one-by-one iteration
Bias reduction | Datasets and predictive power
Seeding | Maximally spanning datasets or Monte-Carlo acceleration

vonrudorff@uni-kassel.de

