Cross-validation

Generalisation error

Challenge

- Need quality assessment
 - Cannot use training data
- Hyperparameters
 - Require unseen data

Solution

 Cross-validation: estimate the expected error if applied to unseen data (generalisation error)

All data					
Training data		Test data or Holdout set	Evaluate model		
Training data Validation set		Validation set			
••••					
Validation set	Training data				

Choose hyperparameters

Generalisation error

Training points are independent and identically distributed (i.i.d.):

- k-fold
- Leave-p-out

most common: k=5 or 10 most common: p=1

- Shuffle split / Monte Carlo

Otherwise:

- Data specific
- Often: stratification first, then one of the above
- Generally: think about what constitutes unseen data and where information could leak into the model

Note on i.i.d.

Is it valid?

- Labels often not identically distributed
- Reference data not independent
 - Converged?
 - Fast enough?
 - Method worked?
 - Generated using assumptions

GFvR, SN Heinen, M Bragato, Anatole von Lilienfeld, Mach. Learn.: Sci. Technol. 2020.

K-fold

Method

- Build n disjoint blocks
- Choose each block once as validation, train on rest
- Report metric on test set

Advantages

- Chooses all data points equally
- Converges quickly

Disadvantages

- Need to choose k
- Imbalanced blocks for most data sets
- Cannot reduce noise further

Validation set

Test set

Leave-p-out

Method

- Use all but p entries for training, rest validation
- Do all combinations (expensive!)

Advantages

- Low noise, since exhaustive
- Chooses all data points equally

Disadvantages

- Quite expensive, quickly becomes infeasible

Shuffle split

Method

- Use all but p entries for training, rest validation
- Do **some** combinations (choose p entries randomly)

Advantages

- Converges to leave-p-out
- Chooses all data points equally

Disadvantages

- Needs quite few random selections to converge

Stratification

- Training data could be imbalanced: Detecting vans in the city
- Subsets become imbalanced despite random selection: Sock drawer problem

Solution: Stratification

- Choose any subset / split s.t. it is closely representative of the full data set
 - Mean label / distribution of labels
 - Prevalence of groups
 - Prevalence of features
- Independent of method of cross-validation / actual model

Note on split ratios

All data				
Training data	Test data or Holdout set			

Too small: Bad estimate of generalisation error

Too large: Loosing training data

Solution: fully nesting k-fold

- Average k-fold over all choices for test data

Note on subsampling

Best practices

- Shuffle all data
- Stratify into 5 groups
- Repeat until converged:
 - For each of these groups:
 - One group as test set, rest as training
 - Split train into stratified random sets
 - Check whether hyperparameters and performance is converged

Removes bias of ordering Prevents overfitting Helps if test set is small

Test on all data points Estimate hyperparameters

Summary Cross-validation

- Key target is reliable estimation of generalization error
- May require stratification to avoid bias
- Different methods differ in cost, simplicity, and convergence
- Relevant representatives: Leave-p-out, k-fold, shuffle split
- Common split ratio 80%/20% (no hard justification except experience)