Definition and Overview

Introduction

Machine Learning

Foundations | Statistical modelling

Accuracy | Systematically improvable through data and training Specialty | Universal, scale-bridging, data-driven approach Limitation | Requires training data, no black box

ML = Mapping compound to property using some explicit results.

Quantum chemistry picture

Representations

Traditional methods

DFT accuracy

Every computational chemistry model comes from careful neglect of physical effects.

Summary Definition and Overview

- Machine Learning is statistical modelling
- Re-use of previous information
- Traditional methods (quantum chemistry, QC) are still used as reference
- Scaling with system size of QC unfavourable
- QC does not always agree with itself
- Features = arguments of the learned function
- Labels = results of the learned function