Differentiable Quantum Chemistry

Guido Falk von Rudorff, University of Kassel

Core idea

- Self-consistent cycle can be a pure function
- Build call tree, apply chain rule
- Technical challenges:
 - Requires re-implementation
 - Crossing language borders is hard
 - Some syntactic sugar is unsupported
 - Slow, can be boosted with "Harris functional" like step
- Chemistry challenges:
 - Some derivatives not well defined (e.g. w.r.t. basis set)

Example Forward Mode

$z = f(x_1, x_2)$	
J (** 1) ** 2)	Оре
$= x_1 x_2 + \sin x_1$	w_1 =
$= w_1 w_2 + \sin w_1$	w_2 =
$= \eta \eta_{2} + \eta \eta_{4}$	w ₃ =
$-\omega_3 + \omega_4$	w_4 =
$=w_5$	w_5 =

Operations to compute derivative
$\dot{w}_1=1$ (seed)
$\dot{w}_2=0$ (seed)
$\dot{w}_3=w_2\cdot\dot{w}_1+w_1\cdot\dot{w}_2$
$\dot{w}_4 = \cos w_1 \cdot \dot{w}_1$
$\dot{w}_5=\dot{w}_3+\dot{w}_4$

- Most natural
- Compute intensive: needs seed (0, 1) for next variable, so each gradient costs the same as the original function

Example Reverse Mode

 $z = f(x_1, x_2)$ $= x_1 x_2 + \sin x_1$ $= w_1 w_2 + \sin w_1$ $= w_3 + w_4$

 $= w_{5}$

- More memory, faster compute
- Multiple derivatives at once
- Can be done on
 - other primitives
 - control structures
- Works with matrices

$$\begin{aligned} \frac{dz}{dz} &= 1\\ z &= w_5 \Rightarrow \frac{dz}{dw_5} = 1\\ \frac{dz}{dw_4} &= \frac{dz}{dw_5} \frac{dw_5}{dw_4} = 1 \times 1 = 1\\ \frac{dz}{dw_3} &= \frac{dz}{dw_5} \frac{dw_5}{dw_3} = 1 \times 1 = 1\\ \frac{dz}{dw_2} &= \frac{dz}{dw_3} \frac{dw_3}{dw_2} = 1 \times w_1 = w_1\\ \frac{dz}{dw_1} &= \frac{dz}{dw_3} \frac{dw_3}{dw_1} + \frac{dz}{dw_4} \frac{dw_4}{dw_1} = w_2 + \cos(w_1) \end{aligned}$$

DiffiQult

- Forward mode proof-of-concept
- Reason: matrix diagonalisation for degenerate eigenvalues not available in reverse mode
- Optimizes everything
- HF

Site This: ACS Cent. Sci. 2018, 4, 559–566

Research Article

Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree–Fock

Teresa Tamayo-Mendoza,[†] Christoph Kreisbeck,^{*,†} Roland Lindh,[‡][®] and Alán Aspuru-Guzik^{*,†,§}[®]

Quax

Adam S. Abbott, Boyi Z. Abbott, Justin M. Turney, and Henry F. Schaefer, III*

6

DQC

- Reverse mode (!)
- Focuses on different properties
- HF, DFT
- Includes alchemical derivatives

Cases	DQC	PySCF
H ₂ O (HF/cc-pVDZ)	96 ms	245 ms
H ₂ O (PW92/cc-pVDZ)	530 ms	430 ms
C ₄ H ₅ N (HF/cc-pVTZ)	108 s	17 s
C ₄ H ₅ N (PW92/cc-pVTZ)	101 s	25 s
C ₄ H ₅ N (density fit PW92/cc-pVTZ)	30 s	22 s
C ₆ H ₈ O ₆ (density fit PW92/cc-pVDZ)	87 s	57 s

TABLE I. Execution speed comparison between DQC (SCE iterations) and PvSCE

DQC: A Python program package for differentiable quantum chemistry

Cite as: J. Chem. Phys. **156**, 084801 (2022); doi: 10.1063/5.0076202 Submitted: 22 October 2021 • Accepted: 31 January 2022 • Published Online: 22 February 2022

Muhammad F. Kasim, 1,a) 🝺 Susi Lehtola, 2 🔟 and Sam M. Vinko 1, 3, b) 🝺

PySCF-AD

- Most advanced
- Out-of-core only
- No integral symmetries
- Reverse-Mode
- Takes special care of SCF derivatives
- Based on JAX

