Machine Learning Basics

Guido Falk von Rudorff, University of Kassel

Goals Machine Learning

- What is ML?
- What are the key ingredients?
- Problem Classes
- Simple example Algorithms

Introduction

Machine Learning

Foundations | Statistical modelling

Accuracy | Systematically improvable through data and training Specialty | Universal, scale-bridging, data-driven approach Limitation | Requires training data, no black box

ML = Mapping compound to property using some explicit results.

Quantum chemistry picture

Representations

Supervised Learning (with labels)

Classification

- Stability

...

- Reaction mechanisms
- Reaction barriers
- Geometries

• • •

Clustering

Unsupervised Learning

(without labels)

- Dimensionality reduction
- Find mechanisms

...

- Find mechanisms

•••

- Detect networks

Classification

Challenges

- Imbalanced frequencies
- Irrelevant features
- Overlapping classes
- Non-linear data
- High-dimensional data

Approaches

- One vs All: n classifiers
- One vs One: n*(n-1) classifiers

Common algorithms

- Decision trees / Random forest
- K-nearest neighbours
- Neural networks

Regression

Challenges

- Outliers
- Multicollinearity
- Non-normalised features
- Heteroscedasticity

Approaches

- Regularisation
- Bootstrapping

Common algorithms

- Support vector machines
- Gaussian process regression
- Neural networks

Decision Trees

Split data along feature data range, typically binary decisions

- Scalar: find delimiter
- Discrete: yes/no

When to use

Pros

- Easy to interpret / visualize
- Cheap to use
- No data standardization necessary
- Works well with large amounts of training data (need exponentially more data for another level)
- Flexible: both regression and classification

Cons

- Costly to train
- Prone to overfitting
- Overfitting in high dimensions
- Struggles with "diagonal data"
- Struggles with imbalanced data sets
- Instable under changed of training / randomization Consider random forests

- How to fix
- Consider random forests
- Restrict depth of tree
- Subselect features
- Transform features with principal components
- Subsample

Nearest Neighbor

Idea

- Find most similar object and take its label

Requirements

- Similarity measure between objects

Alternatives

- Find k most similar objects and take their majority label
- Weight those similar objects by their similarity
- Transform coordinates such that classification is easier (Neighborhood component analysis)
 Decis
- Transform metric

(Large margin nearest neighbor)

k-Nearest Neighbor

Idea

- Noisy data creates artefacts
- Find k most similar objects and take their majority label
- Small k: prone to overfit
- Large k: underfit

When to use

Pros

- No training except hyperparameter optimisation
- Simple method
- Need cheap model

Cons

- High dimensions: all points are far away from each other
- Large k needed due to noise may underfit
- Hard to query efficiently

How to fix Project dimensions Exploit intrinsic dimension Change representation Exploit static training data: index Use approximate nearest neighbors

Summary Machine Learning

- ML: mapping input features onto output labels
- Purely data-driven, exploits similarity
- Systematic improvement of models through more data
- Not parameter-free
- Problem families: classification / regression
- Decision Tree
 - Hierarchy of conditions
 - Needs plenty of data, no closed form fit
- K-nearest neighbor
 - (Weighted) average of k most similar points
 - Needs good coverage, simple to implement
- Many other methods available