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Mean-field theory to solve the electronic Schrödinger equation (similar to DFT)

[
T̂e (r) + V̂eN (r;R) + V̂NN (R) + V̂ee (r)

]
!(r;R) = Eel!(r;R) (77)

Nuclear repulsion Electron repulsion

Kinetic energy of the electrons

Coulomb electron-nuclei All-electron wavefunction

explicitly:
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⎤

⎦!(r;R) = Eel!(r;R) (78)
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Distance nucleus-electron
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Distance electron-electron
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Assuming non-interacting electrons yields Hartree product

!HP(x1 , x2, · · · , xN ) = ω1 (x1)ω2(x2) · · · ωN (xN ) (79)
One-electron orbitalPosition of electron 1

All-electron wavefunction

But this approach does not satisfy the antisymmetry principle

ω1(x2)ω2(x1) = →ω1(x1)ω2(x2) (80)
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Determinant
– Enables antisymmetry: row and column exchanges switch sign
– Electrons are indistinguishable: contains all N ! permutations
– Every electron in every orbital
– Equivalent to mean field treatment
– Satisfies Pauli exclusion
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1√
N !
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=
1

√
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∑

P

(→1)PωP1(x1) · · ·ωPN (xN )

(81)
Normalises →Ψ|Ψ〉 = 1
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Electronic energy expression

Eel = 〈!|Ĥel|!〉 (82)

Ĥel =
∑

i

h(i) +
∑

i<j

v(i, j) + VNN h(i) = →1

2
∇2

i →
∑

A

ZA

riA
v(i, j) =

1

rij

(83)
Core Hamiltonian

Orthonormality

〈ωi|ωj〉 = εij (84)
Kronecker-Delta: 1 if and only if i = j
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In integral form

EHF =
∑

i

〈i|h |i〉+ 1

2

∑

ij

[ii|jj]→ [ij|ji] (85)
Core Hamiltonian

Core Hamiltonian: One electron, two center

〈i|h|i〉 ≡
∫

dx1ω∗
i (x1)h(x1)ωi(x1) (86)

Electron-repulsion integral (ERI): two electron, four center

[ij|kl] ≡
∫

dx1dx2ω∗
i (x1)ωj(x1)

1

r12
ω∗
k(x2)ωl(x2) (87)
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For non-interacting particles:

h(x1)ωi(x1) +
∑

j $=i

[
Jj (x1)

]
ωi(x1)→

∑

j $=i

[
Kj (x1)

]
ωj(x1) = εiωi(x1) (88)

Coulomb term Exchange term

With

Jj(x1) ≡
∫

dx2|ωj(x2)|2r−1
12 (89)

Kj(x1) ≡
∫

dx2ω∗
j (x2)ωi(x2)r−1

12 (90)
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⎡

⎣h(x1) +
∑

j $=i

Jj(x1)→
∑

j $=i

Kj(x1)

⎤

⎦ωi(x1) = εiωi(x1) (91)

With [Ji(x1)→Ki(x1)]ωi(x1) = 0

f(x1)ωi(x1) = εiωi(x1) f(x1) ≡ h(x1) +
∑

j

Jj(x1)→Kj(x1) (92)
Fock operator

Solved numerically by optimizing orthonormal orbitals
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Solve f(x1)ωi(x1) = εiωi(x1) in basis set

ωi =
K∑

µ=1

Cµi ω̃µ f(x1)
∑

ν

Cνiω̃ν(x1) = εi
∑

ν

Cνiω̃ν(x1) (93)

Number of basis functions

Basis function

∑

ν

FµνCνi = εi
∑

ν

SµνCνi ≃ F C = SCε (94)
Overlap matrix element Coefficient matrix ∈ RK×Ne

Fock matrix element Fock matrix ∈ RK×K Overlap matrix ∈ RK×K

Fµν ≡
∫

dx1ω̃∗
µ(x1)f(x1)ω̃ν(x1) Sµν ≡

∫
dx1ω̃∗

µ(x1)ω̃ν(x1) (95)
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Preparation
– Choose system and K basis functions ω̃µ

– Evaluate operators h and r−1
ij in that basis (each operator is a K ×K matrix)

– Initial guess (many ways, e.g. Superposition of Atomic Densities (SAD))

Self-Consistent Iterations
– Build density from C
– Calculate F[C]
– Solve F C = SCε for new C
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Implications
– Replace the many-body wave function with a single Slater determinant of
molecular orbitals.

– Mean-field approximation: each electron moves in the average field of all other
electrons.

– Key components:
– Coulomb interaction: Jj (classical electron-electron repulsion)
– Exchange interaction: Kj (quantum mechanical, no classical analog)

– Self-consistent field (SCF) method: orbitals depend on all other orbitals.
– Roothaan equations: FC = SCε solve HF in finite basis set.
– Foundation for post-HF methods (MP2, CCSD, etc.) and hybrid DFT functionals.


