Møller-Plesset Perturbation Theory

$$E_{\rm MP2,c} = -\frac{1}{4} \sum_{a < b}^{\rm occ} \sum_{r < s}^{\rm virt} \frac{|\langle ab||rs\rangle|^2}{\varepsilon_r + \varepsilon_s - \varepsilon_a - \varepsilon_b}$$

- Include correlation as perturbation up to order n
 - Zeroth order is Hartree-Fock
- Does not necessarily converge (or behave well)
- Comparably simple method, common for weak correlation
- Higher orders possible, yet much more expensive and not quite better
- Yields energies, no new wave functions, not variational, size-consistent

$$\Psi_{\rm CCSD} = \exp(\hat{T}_1 + \hat{T}_2)\Psi_{\rm HF}$$

$$\hat{T}_1 = \sum_{a}^{\text{occ}} \sum_{r}^{\text{vir}} t_a^r \hat{a}_r^\dagger \hat{a}_a$$
$$\hat{T}_2 = \frac{1}{4} \sum_{ab}^{\text{occ}} \sum_{rs}^{\text{vir}} t_{ab}^{rs} \hat{a}_r^\dagger \hat{a}_s^\dagger \hat{a}_a \hat{a}_b$$

- T_1 are all single excitations, T_2 all double, ...
- Taylor expansion of exp yields combinations and relation between amplitudes *t* and FCI coefficients *c*
- Rearrange all terms from FCI, formally equivalent if all excitations would be included
- Common variants: CCSD (singles doubles), CCSD(T) (singles doubles with perturbative triples)
- Methods beyond CCSD(T) are rare
- CCSD(T) is often called the "gold standard" for weak correlation
- Yields energies, new wave function, not variational, size consistent

Depends on number of basis functions n (ignoring screening & implementation tricks for now)

Pseudopotentials

Core Idea

- Core electrons are rarely affected by bonding and do not overlap between atoms
- Core wavefunctions are highly localised
 - Expensive in plane waves

What if the core is isolated and imputed/precomputed?

Atomic sodium

Sodium dimer

Frozen Core

- Core electrons stay as they are, no response to environment
- The opposite: "all-electron calculation"
- Implicit default in many calculations, little impact on geometries
- Requires special basis sets to turn off: e.g. cc-pVnZ ->cc-pCVnZ
- Somewhat arbitrary separation into core/valence
- ORCA:

Table 9.8: Default values for number of frozen core electrons.

	Η																	He
	0																	0
	Li	Be]										В	С	N	0	F	Ne
	0	0											2	2	2	2	2	2
	Na	Mg]										Al	Si	P	S	Cl	Ar
	2	2											10	10	10	10	10	10
	Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	10	10	10	10	10	10	10	10	10	10	10	10	18	18	18	18	18	18
	Rb	\mathbf{Sr}	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
	18	18	28	28	28	28	28	28	28	28	28	28	36	36	36	36	36	36
	\mathbf{Cs}	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	36	36	46	46	46	46	46	46	46	46	46	46	68	68	68	68	68	68
	\mathbf{Fr}	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn						
	68	68	68	100	100	100	100	100	100	100	100	100						
					_	_	_	_			_	_	_					_
Lanthanides			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
				36	36	36	36	36	36	36	36	36	36	36	36	36	36	
Actinides				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	
				68	68	68	68	68	68	68	68	68	68	68	68	68	68	

no. frozen core electrons	frozen configuration
0	-
2	1s ²
2	1s ²
10	1s ² 2s ² 2p ⁶
10	1s ² 2s ² 2p ⁶
	no. frozen core electrons 0 2 2 10 10

Pseudopotential

Pseudopotentials

- Away from the nuclei (outside the cutoff), all-electron and pseudo-wave function need to agree
 - All-electron wave function comes from a reference calculation
- Spectrum of Hamiltonian needs to be identical
- Pseudopotential needs to have the same effect on valence electrons
- Replaces interactions with core electrons (XC, Hartree)

Families:

- Norm-conserving
 - Total charge until cutoff identical
- Ultrasoft
 - Charge close to cores augmented after the fact
 - Correction depends on actual geometry
 - Cheaper for plane waves

Vanderbilt

Derivatives

Relevance of derivatives

properties that can be formulated (and calculated) as derivatives of the energy

	nth derivative with regard to			ve v to	vith change in geometry (R), external electric field (F) external magnetic field (M, nuclear magnetic field (I)
	n _R	n _F	n _B	n _I	Property
	1	0	0	0	Energy gradient <i>g</i>
	2	0	0	0	Harmonic vibrational frequencies ω_{i}
	3	0	0	0	(cubic) anharmonic corrections to vibrational frequecies $\omega_{i}x_{i}$
	0	1	0	0	Electric dipole moment μ
	0	2	0	0	Electric polarizability α
	0	3	0	0	(first electric) hyperpolarizability eta
	0	0	1	0	Magetic (dipole) moment μ
	0	0	2	0	magnetic susceptibility χ
	0	0	0	1	ESR hyperfine coupling constant a i
	0	0	0	2	Spin-spin coupling ${m J}_{ii}$ of different nuclei
mixed	1	1	0	0	Intensities of fundamental IR transitions
erivatives	2	1	0	0	Intensities of overtones and combination bands in IR spectra
•	1	2	0	0	Intensities of fundamental Raman transitions
•	2	2	0	0	Intensities of overtones and combination bands in Raman spectra
•	0	1	1	0	Circular dichroism (CD)
•	0	2	1	0	Magnetic circular dichroism (MCD)
•	0	0	1	1	Nuclear magnetic shielding ($ ightarrow$ chemical shift in NMR)

Derivatives in Chemistry

Equivalents

- f(x): total energy $E(\mathbf{R}_i, Z_i)$

Gradients

- Molecular forces
 - Commonly implemented
 - Special derivations
- Alchemical derivatives: electronic electrostatic potential

Hessians

- Normal modes
 - Commonly only for spatial derivatives
 - Special derivations (less often)

What if we have no derivatives?

Finite differences (FD)

Approximative derivatives

- Similar to the limit expression

Variants

- Forward/backward
- Central
- Higher-order

Issues

- Finite displacement
- Numerical stability / finite precision
- Many calculations

Main advantage

- General applicability
- Just points and weights

