Subspace methods

When to use

- Local minima
- Reasonable initial guess
- High dimensionality

When not to use

- Noisy function evaluations

Popular representatives

- Conjugate Gradients
 scipy.optimize.minimize(method='CG')

CG (Fletcher-Reeves)

Initialise

$$p_0 = -\nabla f(a_n)$$

Line search

$$\alpha_{n+1} = \arg\min f(a_n + \alpha p_n)$$

Update optimisation

$$a_{n+1} = a_n + \alpha_{n+1} p_n$$

New problem-orthogonal search direction

$$\beta_{n+1} = \frac{||\nabla f(a_{n+1})||^2}{||\nabla f(a_n)||^2}$$

 $p_{n+1} = -\nabla f(a_{n+1}) + \beta_{n+1}p_n$

CG

Subsequent residual minimisation

Variants

- Other search directions β

Problems

- Numerical stability: restart

Stochastic optimization family

When to use

- Large domain
- Highly non-linear
- Small attractive basins
- Many minima
- High dimensionality

When not to use

- (Cheap) gradients available

Popular representatives

- Simulated annealing
 scipy.optimize.basinhopping
- Genetic algorithms

scipy.optimize.differential_evolution

Optimization: Caveats

Convergence

- Hard to establish
- Gradient necessary, but not sufficient
- Hessian expensive
- Local property

Numerical stability

- Finite differences
- Conjugate Gradients
- Shallow minima

Cost of Hessians

- Scales as N^2
 - Water: N=9
 - Caffeine: N=72
- Often only from finite differences

Optimization: Caveats

Curse of dimensionality

- Search space quickly increases
- Often forces tiny optimization steps

Preconditioning

- Math not equal to finite-precision implementations
- Transform problem into an equivalent one
- Focus on numerical stability
- Key: use libraries when possible or implement algorithms verbatim

Families of Approximations

Classical molecular dynamics

- Typically fixed bonds
- No quantum effects
- Reference: quantum data

$$E = \sum_{\text{bonds}} K_b (b - b_0)^2 + \sum_{\text{angles}} K_\theta (\theta - \theta_0)^2$$

+
$$\sum_{\text{dihedrals}} K_\phi (1 + \cos(n\phi - \delta))$$

+
$$\sum_{\text{improper}} K_\phi (\phi - \phi_0)^2 + \sum_{\text{Urey-Bradley}} K_u (u - u_0)^2$$

+
$$\sum_{i < j} 4\varepsilon \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \sum_{i < j} \frac{q_i q_j}{4\pi \varepsilon_0 r_{ij}}$$

https://dx.doi.org/10.1021/jp507464m / wikicommons

Quantum chemistry

Hartree World

Hartree-Fock

FIGURE 1. Jacob's ladder of density functional approximations. Any resemblance to the Tower of Babel is purely coincidental. Also shown are angels in the spherical approximation, ascending and descending. Users are free to choose the rungs appropriate to their accuracy requirements and computational resources. However, at present their safety can be guaranteed only on the two lowest rungs.

Michael Willmann, 1691

Machine learning force fields

