# **Computational Chemistry**

Guido Falk von Rudorff, University of Kassel







# What is this course about?

#### **Computational Chemistry**

- 1. Start from Schrödinger equation
- 2. Realise it is impractical to solve exactly
- 3. Neglect effects: build, explain and justify approximations
  - Force fields, Density Functional Theory
  - Degree of electron correlation
- 4. For each system, find appropriate approximations









## What is this course about?



# What is this course about?

#### **Potential Energy Surfaces**

Which compounds are stable? Which reactions take place?

Molecular mechanics How do atoms move?

#### Machine Learning models

How can one automate approximations?

#### **Electronic structure calculations**

Which methods have predictive power?

**Simulation of molecules, materials, and interfaces** How to get started?

#### **Perturbation Theory**

How does the system react to changes?

**Differentiable Chemistry** How can one get derivatives conveniently?

# Where can I use this knowledge?

#### Direct

- Molecular / Materials design
- Bio / Medical applications
- Method development

#### Indirect

- Machine learning
- Data science
- Research in general

Guide experiment Understand chemical process Widen applicability

Data-driven approximations Extract and manage large databases Strategies and methods

#### 

R. Van Noorden, B. Maher, R. Nuzzo, Nature, 2014.

### Lecture

Questions anytime lecture, moodle, <u>vonrudorff@uni-kassel.de</u>, ...

Live recording: POLYGLOTT

Slides and notes as PDF after the lecture

Related: Machine Learning (summer term)

| n of thought |
|--------------|
| )            |

Introduction

# Exercise

#### Python-based: the language of data science and glue code



#### Weekly assignments:

- At first: concepts / programming
- Later: computational chemistry
- End: modern research problems
- Typically: 2 regular tasks + one harder one if you consider research in this area

### About me



# BSc/MSc Physics BerlinForce fieldsPhD PhysicsLondonQuantum chemistryPostDocBasel, ViennaMachine Learning & Alchemy

Machine Learning



Quantum Alchemy



**Born-Oppenheimer Approximation** 



# Formal picture



Electronic Electron-nuclei Nuclear repulsion attraction repulsion

# Formal picture

# $\hat{\mathrm{H}}(\mathbf{r}_i, \mathbf{R}_I) = \hat{\mathrm{T}}_{\mathrm{n}}(\mathbf{R}_I) + \hat{\mathrm{T}}_{\mathrm{e}}(\mathbf{r}_i) + \hat{\mathrm{V}}_{\mathrm{ee}}(\mathbf{r}_i) + \hat{\mathrm{V}}_{\mathrm{en}}(\mathbf{r}_i, \mathbf{R}_I) + \hat{\mathrm{V}}_{\mathrm{nn}}(\mathbf{R}_I) + \hat{\mathrm{V}}_{\mathrm{ext}}$

What if Hamiltonian would be separable into electronic and nuclear parts?

Equipartition theorem (thermodynamics):

The time-averaged kinetic energy in a degree of freedom only depends on the temperature.

$$E_{\text{kin,n}} \approx E_{\text{kin,e}}$$

$$\Rightarrow m_n v_n^2 \approx m_e v_e^2$$

$$\Rightarrow \frac{v_e}{v_n} \approx \sqrt{\frac{m_n}{m_e}} \qquad \frac{m_n}{m_e} \approx 1800$$

Separation: slow nuclei and fast electrons live on different time scales.

# Born-Oppenheimer approximation

Approximation: Hamiltonians and wave functions of the two are separable by time scales.

$$\hat{\mathrm{H}}(\mathbf{r}_i, \mathbf{R}_I) \equiv \hat{\mathrm{H}}_{\mathrm{e}}(\mathbf{r}_i | \mathbf{R}_I) + \hat{\mathrm{H}}_{\mathrm{n}}(\mathbf{R}_I)$$

$$\Psi(\mathbf{r}_i, \mathbf{R}_I) \equiv \Psi_{\mathrm{e}}(\mathbf{r}_i | \mathbf{R}_I) \Psi_{\mathrm{n}}(\mathbf{R}_I)$$

$$f(x|b) = f_b(x) \equiv \log_b x$$
Parameter (static)

Argument (changeable)

- 1. Consider nuclei fixed (and potentially classically).
- 2. Solve Schrödinger equation for electrons only.

$$\hat{\mathbf{H}}_{\mathbf{e}}(\mathbf{r}_i | \mathbf{R}_I) \Psi(\mathbf{r}_i | \mathbf{R}_I) = E \Psi(\mathbf{r}_i | \mathbf{R}_I)$$

System defines molecular Hamiltonian  $\widehat{H}$ 

 $\hat{H} = \hat{T} + \hat{V} = \hat{T}_{e} + \hat{V}_{en} + \hat{V}_{ee} + \hat{V}_{nn} + \hat{V}_{ext}$ 



$$-\sum_{i,j}\frac{Z_ie^2}{4\pi\varepsilon_0\left|\mathbf{R}_i-\mathbf{r}_j\right|}$$

 $= -\sum_{i} \frac{\hbar^2}{2m_e} \nabla^2_{\mathbf{r}_i}$ 

Coulomb interaction electrons-nuclei

$$+\sum_{i,j>i}\frac{e^2}{4\pi\varepsilon_0\left|\mathbf{r}_i-\mathbf{r}_j\right|}$$

Coulomb interaction electrons-electrons

$$+\sum_{i,j>i}\frac{Z_iZ_je^2}{4\pi\varepsilon_0\left|\mathbf{R}_i-\mathbf{R}_j\right|}$$

Coulomb interaction nuclei-nuclei

Wave function

$$\Psi = \Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \dots, \mathbf{r}_n)$$

# Wave function

$$\Psi = \Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \dots, \mathbf{r}_n)$$

Impractical:

- 3n dimensions for n electrons
- Almost always no closed form expression
- Numerical solution: discretisation in basis functions

Costly: 
$$[s] \simeq \exp(2n)/10^4$$
  $[MB] \simeq \exp(n)/2$ 

Methane CH4









https://gist.github.com/ferchault/1e6009e78310200673969ef96c9dad1d

- 1. In principle, properties could be done arbitrarily accurately, but that is too expensive.
- 2. Two core approximations:

Electrons feel static nuclei and nuclei feel averaged electrons. ("Born-Oppenheimer")

Finite accuracy of wave function / numerics.

("Discretisation")

3. Mental picture: static atoms and electron density.

# **Chemical Space**

## Hierarchies



https://doi.org/10.1063/5.0095674

# Scaling

#### Scaling with chemical diversity

| Elements    | # atoms | # sum formulas | # graphs <sup>[1]</sup> | #confomers             |
|-------------|---------|----------------|-------------------------|------------------------|
| CONF        | 5       | 169            | 4,715                   | 16,797 <sup>[2]</sup>  |
| CONFS       | 5       | 349            | 9,917                   | 51,710                 |
| CONFSP      | 5       | 757            | 31,550                  |                        |
| CONFSPCI    | 5       | 1,142          | 37,908                  |                        |
| CONFSPCIBr  | 5       | 1,647          | 45,132                  |                        |
| CONFSPCIBrI | 5       | 2,291          | 53,285                  | 328,591 <sup>[2]</sup> |

#### Scaling with number of heavy atoms

| Elements | # atoms | # sum formulas | # graphs  | #confomers <sup>[2]</sup> |
|----------|---------|----------------|-----------|---------------------------|
| CONF     | 1       | 4              | 4         |                           |
| CONF     | 2       | 19             | 19        |                           |
| CONF     | 3       | 49             | 94        |                           |
| CONF     | 4       | 97             | 621       |                           |
| CONF     | 5       | 169            | 4,715     |                           |
| CONF     | 6       | 276            | 42,087    |                           |
| CONF     | 7       | 425            | 417,923   | 7,039,390                 |
| CONFS    | 1       | 5              | 5         |                           |
| CONFS    | 2       | 28             | 28        |                           |
| CONFS    | 3       | 82             | 160       |                           |
| CONFS    | 4       | 180            | 1,161     |                           |
| CONFS    | 5       | 349            | 9,917     |                           |
| CONFS    | 6       | 625            | 97,607    |                           |
| CONFS    | 7       | 1,050          | 1,064,343 | 23,016,417                |

https://gist.github.com/ferchault/9ae958b637a255475b502fc63c652835