Design in Compound Space With Machine Learning and Quantum Alchemy

Guido Falk von Rudorff, University of Vienna

Introduction

Design: sample by guided trial-and-error.

Global Search Problem Which class of compounds?

Drug-like: 10⁶⁰

Local Search Problem Which particular species within that class?

BN-doped 8x8 graphene: 10⁵⁰

G. Ceder, Science 1998. A. Franceschetti, A. Zunger, Nature, 1999. A. Mullard, Nature, 2017.

Introduction

Machine Learning

Quantum Alchemy

Foundations | Statistical modelling

Accuracy | Systematically improvable through data and training Specialty | Universal, scale-bridging, data-driven approach Limitation | Requires training data, no black box

Chemistry: exciting new domains become accessible!

Foundations | Perturbation theory

Accuracy | Systematically improvable through higher orders terms Specialty | Combinatorial scaling with chemical diversity Limitation | Finite range in chemical space

Introduction: Machine Learning

Machine Learning

Kernel-Ridge-Regression

- Efficient in the low-data regime (around 1k points)
- Ingredients
 - Representation
 - Similarity measure
 - Observed properties
- Training
 - Pairwise similarities
 - Model coefficients
- Predictions
 - Compare to training $ilde{q}(\mathbf{M}) = \sum lpha_i k(\mathbf{M}, \mathbf{M}_i)$

 $\mathbf{M} \ k(\mathbf{M}_i,\mathbf{M}_j) \ \mathbf{y}$

 $\begin{aligned} \mathbf{K} \\ \boldsymbol{\alpha} &= (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y} \end{aligned}$

Identification of atmospheric brown carbon

Experiment

Search space

Molecular graphs: Stable molecules:

264 M

123 M

Model

Excitation energies Oscillator strengths

Identified features

Guide experiment

How many molecules are left and which feature to measure next?

E. Tapavicza, GFvR, D. O. De Haan, M. Contin, C. George, M. Riva, O. A. von Lilienfeld, Environ. Sci. Technol.

Geometry learning

G2S

- Closer to DFT than common methods
 - Small molecules
- Applicable to complex chemical spaces
 - Transition state geometries
 - Carbenes

D. Lemm, GFvR, O. A. von Lilienfeld, Nat. Commun. 2021.

Reaction barrier learning

Competing reactions: E2, $S_N 2$

- 4.5k reactions in one new dataset
- Learning activation energies from reactants only reaching 2.5 kcal/mol with 800 data points
- Learning geometries of transition states
 - direct0.05 Angstrom for distances
 - G2S

0.45 Angstrom heavy-atom RMSD

Hammond's postulate

- valid for S_N2, not for E2
- E2 preferred in 75% of the cases: less sensitive to reactant complex

GFvR, S.N. Heinen, M. Bragato, O. A. von Lilienfeld, *Mach. Learn.: ScigEochergy* 2020.

Reaction barrier learning

Hammett equation Electron withdrawing/donating order of substituents recoverable

- Physics-based model
- Use Hammett as baseline

M. Bragato, GFvR, O. A. von Lilienfeld, Chem. Sci. 2020.

Computational cost

Computational effort as molecular property

- Improves models
- Accuracy depends on problem
 - Single points: 2%
 - Transition state search: 25%
 - Geometry optimisations: 40%

S.N. Heinen, M. Schwilk, GFvR, O. A. von Lilienfeld, Mach. Learn.: Sci. Technol. 2020.

Model availability

- **D** chemspacelab/Enhanced-Hammett
- 🗘 qmlcode/qml
- ferchault/mlscheduling
- **()** ...
- Dependencies might break
- Might be an old model
- Tedious/risky to get started
- Therefore:

leruli.com

Search Sum Formula, Compound Name, SMILES, SMARTS, SELFIES, Inchl

C1=CC=CC=C1C1=C(C2=CC=CC=C2)C=CC=C1

Search

Examples: C₈O₂H₁₈ Resveratrol C1COCCO1

Model availability

Search Sum Formula, Compound Nam	ie, SMILES, SMARTS, SELFIES, Inchi				Search
Share your results by copying the U	RL or clicking				
Lewis Structure) Save As + Dr	Drug Likeness		Lipinski	5/5
	Lij	pinski	5/5	Molecular Weight <= 500	228.25 g/Mol
	OH G	hose	4/4	logP <= 5.0	3.3
		iber	2/2	HBD <= 5	3
		1eos	7/7	HBA <= 5	3
		ale of 3	3/5	Rotatable Bonds <= 5	5
Reference : Indigo Ghose	4/4 Ve	ber	2/2	REOS	7/7
Reference : Indigo Ghose 160 <= Molecular Weight <= 480	4/4 Ve	e ber po. Polar Surface Area <= 140	2/2 60.69	REOS 200 <= Molecular Weight <= 500	7/7 22825
Reference : Indigo Ghose 160 <= Molecular Weight <= 480	4/4 Ve 22825 g/Mol 3.3 Rc	e ber pp. Polar Surface Area <= 140 statable Bonds <= 10	2/2 60.69 5	REOS 200 <= Molecular Weight <= 500	7/7 228.25 g/Mol 3.3
Reference : Indigo Ghose 160 <= Molecular Weight <= 480	4/4 Ve 22825 g/Moi 3.3 29	s ber po. Polar Surface Area <= 140 tatable Bonds <= 10	2/2 60.69 5	200 <= Miotecular Weight <= 500	7/7 228.25 g/Mol 3.3 3
Reference : Indigo Ghose 160 <= Molecular Weight <= 480	4/4 Ve 22825 g/Moi 3.3 29 0 6658	e ber po. Polar Surface Area <= 140 tatable Bonds <= 10	2/2 60.69 5	200 <= Molecular Weight <= 500	7/7 228.25 g/Mol 3.3 3 3 3
Reference : Indigo Ghose 160 <= Molecular Weight <= 480	4/4 Ve 22825 0/Mol 3.3 29 0 6658	e ber po. Polar Surface Area <= 140 /statable Bonds <= 10	2/2 60.69 5	200 << Molecular Weight << 500	7/7 228.25 g/Mol 3.3 3 3 5
Reference: Indigo Ghose 160 <= Molecular Weight <= 480	4/4 Ve 22825 g/Mol 3.3 29 0 6658	e ber po. Polar Surface Area <= 140 vastable Bonds <= 10	2/2 60.69 5	200 << Molecular Weight << 500	7/7 228.25 g/Mol 3.3 3 3 5 0
Reference : Indigo Ghose 160 <= Molecular Weight <= 480	4/4 Ve 22825 g/Mol 3.3 29 00 6658	e ber po. Polar Surface Area <= 140 tatabble Bonds <= 10	2/2 60.69 5	REOS 200 << Molecular Weight < 500	7/7 22825 g/Mol 3.3 3 3 3 5 0 0 17

Want to include your model? Let me know

Introduction: Quantum Alchemy

Quantum Alchemy

Taylor expansion

- Energy function of
 - Geometry
 - Forces, Vibrations Nuclear charges Alchemical changes
- Idea: obtain dominant leading derivatives, predict many systems

$$\hat{H}(\lambda) \equiv \lambda \hat{H}_{t} + (1 - \lambda) \hat{H}_{r} \qquad \lambda \in [0, 1]$$
$$E_{t} = E_{r} + \sum_{n=1}^{\infty} \frac{1}{n!} \left. \frac{\partial^{n} E(\lambda)}{\partial \lambda^{n}} \right|_{\lambda=0}$$

E. B. Wilson, J. Chem. Phys. 1962. GFvR, O. A. von Lilienfeld, Phys. Rev. Res., 2020.

Taylor expansion

- First terms accurate enough
 - Truncate early
- Scales with chemical space

Paradigm shift

Few highly accurate calculations instead of many intermediate ones

Padé approximant Larger convergence radius

GFvR, J. Chem. Phys. 2021.

Mixed derivatives A path to relaxation

GFvR, J. Chem. Phys. 2021.

Scaling with chemical space

C₂₀

- 1 derivative for second order -
- 5 derivatives for third order —

GFvR, O. A. von Lilienfeld, Phys. Rev. Res., 2020.

Non-covalent interactions

BN-doped coronene dimer

- Identify most/least attractive doping pattern
- Design example!

GFvR, O. A. von Lilienfeld, *Phys. Rev. Res.*, 2020.

Alchemical enantiomers

Quasi-degeneracy for systems if this symmetry applies to

Theory

$$\begin{split} \Delta E_{ij}^{\text{ele}} &= E_0 - E_0 + \int_{\Omega} d\mathbf{r} \sum_{n=0}^{\infty} \frac{\Delta v_i}{(n+1)!} \begin{bmatrix} \frac{\partial^n \rho}{\partial \lambda_i^n} + \frac{\partial^n \rho}{\partial \lambda_j^n} \end{bmatrix} \\ \Delta E_{(0)}^{\text{ele}} &= E_0 - E_0 = 0 \\ \Delta E_{(1)}^{\text{ele}} &= 2 \int_{\Omega} \Delta v \rho = \int_{\Omega} e \cdot o = 0 \\ \Delta E_{(2)}^{\text{ele}} &= \int_{\Omega} \Delta v \begin{bmatrix} \frac{\partial \rho}{\partial \lambda_i} + \frac{\partial \rho}{\partial \lambda_j} \end{bmatrix} \\ &= \int_{\Omega} \Delta v \begin{bmatrix} \sum_{I} \frac{\partial \rho}{\partial Z_I} \frac{\partial Z_I}{\partial \lambda_i} + \frac{\partial \rho}{\partial Z_I} \frac{\partial Z_I}{\partial \lambda_j} \end{bmatrix} = 0 \quad \overset{\text{HN}^+}{\overset{\text{BH}^-}} \qquad \overset{\text{HB}^-}{\bigcup} \quad \overset{\text{HB}^-}{\overset{\text{HB}^-}} \\ &= \int_{\Omega} \Delta v \begin{bmatrix} \sum_{I} \frac{\partial \rho}{\partial Z_I} \frac{\partial Z_I}{\partial \lambda_i} + \frac{\partial \rho}{\partial Z_I} \frac{\partial Z_I}{\partial \lambda_j} \end{bmatrix} = 0 \quad \overset{\text{HN}^+}{\overset{\text{BH}^-}} \quad \overset{\text{HB}^-}{\bigcup} \quad \overset{\text{HB}^-}{\overset{\text{HB}^-}} \\ &= \int_{\Omega} \Delta v \begin{bmatrix} \sum_{I} \frac{\partial \rho}{\partial Z_I} \frac{\partial Z_I}{\partial \lambda_i} + \frac{\partial \rho}{\partial Z_I} \frac{\partial Z_I}{\partial \lambda_j} \end{bmatrix} = 0 \quad \overset{\text{HB}^-}{\overset{\text{HB}^-}} \quad \overset{\text{HB}^-}{\bigcup} \quad \overset{\text{HB}^-}{\overset{\text{HB}^-}} \\ & \overset{\text{HB}^-}{\overset{\text{HB}^-}} \quad \overset{\text{HB}^-}{\overset{\text{HB}^-}} \\ & \overset{\text{HB}^-}{\overset{\text{HB}^-}} \quad \overset{\text{HB}^-}{\overset{\text{HB}^-}} \\ & \overset{\text{HB}^-}{\overset{\text{HB}^-}} \end{aligned}$$

GFvR, O. A. von Lilienfeld, *Science Adv.* 2021.

Alchemical enantiomers

GFvR, O. A. von Lilienfeld, Science Adv. 2021.

Alchemical enantiomers

× 414 M

Design rules in order of decreasing strength

- Add BN pairs
- Maximize CC bonds
- Substitute sites shared between rings
- Maximize BN bonds
- Avoid N substitutions on rings sharing a larger amount of bonds with other rings
- Balance BN substitutions in each ring

Not a single QM calculation required!

GFvR, O. A. von Lilienfeld, Science Adv. 2021.

QA: Millions at once!

Summary

Machine Learning | Global search, information transfer Quantum Alchemy | Local gradients, structure in chemical space, replaces brute fRéaction Barriers | S.N. Heinen, GFvR, O. A. von Lilienfeld, *J. Chem. Phys.*, 2021. Geometry Learning | D. Lemm, GFvR, O. A. von Lilienfeld, *Nat. Commun.* 2021. Quantum Alchemy | GFvR, *J. Chem. Phys.* 2021.

Symmetry | GFvR, O. A. von Lilienfeld, Science Adv. 2021.

Prof. von Lilienfeld Dominik Lemm

Marco Bragato Stefan Heiner

guido.vonrudorff.de

